Bài giảng Mạng máy tính - Chapter 4: Network Layer - The data plane - Nguyễn Lê Duy Lai

Computer Networks  
Lectured by:  
Nguyen Le Duy Lai  
(lai@hcmut.edu.vn)  
Computer  
Networking: A Top  
Down Approach  
7th Edition, Global Edition  
Jim Kurose, Keith Ross  
Pearson  
April 2016  
Introduction 1-1  
Chapter 4  
Network Layer:  
The Data Plane  
Computer  
Networking: A Top  
Down Approach  
7th Edition, Global Edition  
Jim Kurose, Keith Ross  
Pearson  
April 2016  
Network Layer: Data Plane 4-2  
Chapter 4: outline  
4.1 Overview of Network  
layer  
4.4 Generalized Forward and  
SDN  
data plane  
control plane  
match  
action  
4.2 Whats inside a router  
4.3 IP: Internet Protocol  
datagram format  
fragmentation  
OpenFlow examples of  
match-plus-action in  
action  
IPv4 addressing  
network address  
translation (NAT)  
IPv6  
Network Layer: Data Plane 4-3  
Chapter 4: network layer  
chapter goals:  
understand principles behind network layer  
services, focusing on data plane  
network layer service models  
forwarding versus routing  
how a router works  
generalized forwarding  
instantiation, implementation in the Internet  
Network Layer: Data Plane 4-4  
Network layer  
application  
transport  
k  
data link  
physical  
transport segment from  
sending to receiving host  
network  
data link  
physical  
network  
data link  
physical  
network  
data link  
physical  
on sending side,  
encapsulates segments into  
datagrams  
network  
data link  
physical  
network  
data link  
physical  
network  
data link  
physical  
network  
data link  
physical  
on receiving side, delivers  
network  
segments to transport layer  
data link  
physical  
application  
transport  
rk  
data link  
physical  
network layer protocols  
implemented in every host,  
router  
network  
data link  
physical  
network  
data link  
physical  
network  
data link  
physical  
router examines IP header  
fields in all IP datagrams  
passing through it  
Network Layer: Data Plane 4-5  
Two key network-layer functions  
network-layer functions:  
analogy: taking a trip  
forwarding: move  
packets from routers  
input to appropriate  
router output  
routing: determine route  
taken by packets from  
source to destination  
routing algorithms  
forwarding: process of  
getting through single  
interchange  
routing: process of  
planning trip from source  
to destination  
Network Layer: Data Plane 4-6  
Network layer: data plane, control plane  
Control plane  
network-wide logic  
Data plane  
local, per-router function  
determines how datagram is  
routed among routers along  
end-end path from source host  
to destination host  
determines how datagram  
arriving on router input  
port is forwarded to  
router output port  
two control-plane approaches:  
forwarding function  
traditional routing algorithms:  
values in arriving  
packet header  
implemented in routers  
software-defined networking  
(SDN): implemented in  
(remote) servers  
1
0111  
2
3
Network Layer: Data Plane 4-7  
Per-router control plane  
Individual routing algorithm components in each and every  
router interact in the control plane  
Routing  
Algorithm  
control  
plane  
data  
plane  
values in arriving  
packet header  
1
0111  
2
3
Network Layer: Control Plane 5-8  
Logically centralized control plane  
A distinct (typically remote) controller interacts with local  
control agents (CAs)  
Remote Controller  
control  
plane  
data  
plane  
CA  
CA  
CA  
CA  
CA  
values in arriving  
packet header  
1
0111  
2
3
Network Layer: Control Plane 5-9  
Network service model  
Q:What service model for channeltransporting  
datagrams from sender to receiver?  
example services for a  
example services for  
individual datagrams:  
guaranteed delivery  
flow of datagrams:  
in-order datagram  
delivery  
guaranteed delivery with  
guaranteed minimum  
less than 40 msec delay  
bandwidth to flow  
restrictions on changes in  
inter-packet spacing  
Network Layer: Data Plane 4-10  
Network layer service models  
Guarantees?  
Network Service  
Architecture Model  
Congestion  
feedback  
Bandwidth Loss  
Order Timing  
none  
no  
Internet best effort  
ATM CBR  
no no  
no (inferred  
via loss)  
no  
congestion  
no  
congestion  
yes  
constant yes  
rate  
guaranteed yes  
rate  
guaranteed no  
minimum  
none  
yes yes  
yes yes  
yes no  
yes no  
ATM VBR  
ATM ABR  
no  
ATM UBR  
no  
Network Layer: Data Plane 4-11  
Chapter 4: outline  
4.1 Overview of Network  
layer  
4.4 Generalized Forward and  
SDN  
data plane  
control plane  
match  
action  
4.2 Whats inside a router  
4.3 IP: Internet Protocol  
datagram format  
fragmentation  
OpenFlow examples  
of match-plus-action in  
action  
IPv4 addressing  
network address  
translation  
IPv6  
Network Layer: Data Plane 4-12  
Router architecture overview  
high-level view of generic router architecture:  
routing, management  
control plane (software)  
operates in millisecond  
time frame  
routing  
processor  
forwarding data plane  
(hardware) operates  
in nanosecond time  
frame  
high-seed  
switching  
fabric  
router input ports  
router output ports  
Network Layer: Data Plane 4-13  
Input port functions  
lookup,  
link  
forwarding  
layer  
line  
termination  
switch  
fabric  
protocol  
(receive)  
queueing  
physical layer:  
bit-level reception  
decentralized switching:  
data link layer:  
(e.g., Ethernet  
see chapter 5)  
lookup: using header field values, lookup  
output port using forwarding table in input  
port memory (“match plus action”)  
goal: complete input port processing at  
line speed’  
queuing: if datagrams arrive faster than  
forwarding rate into switch fabric  
Network Layer: Data Plane 4-14  
Input port functions  
lookup,  
link  
forwarding  
layer  
line  
termination  
switch  
fabric  
protocol  
(receive)  
queueing  
physical layer:  
bit-level reception  
decentralized switching:  
data link layer:  
e.g., Ethernet  
see chapter 5  
using header field values, lookup output  
port using forwarding table in input port  
memory (“match plus action”)  
destination-based forwarding: forward based  
only on destination IP address (traditional)  
generalized forwarding: forward based on  
any set of header field values  
Network Layer: Data Plane 4-15  
Destination-based forwarding  
forwarding table  
Destination Address Range  
Link Interface  
11001000 00010111 00010000 00000000  
through  
0
1
11001000 00010111 00010111 11111111  
11001000 00010111 00011000 00000000  
through  
11001000 00010111 00011000 11111111  
11001000 00010111 00011001 00000000  
2
3
through  
11001000 00010111 00011111 11111111  
otherwise  
Q: but what happens if ranges dont divide up so nicely?  
Network Layer: Data Plane 4-16  
Longest prefix matching  
longest prefix matching  
when looking up a forwarding table entry for given  
destination address, use longest address prefix that  
matches destination address.  
Destination Address Range  
Link interface  
0
1
2
3
11001000 00010111 00010*** *********  
11001000 00010111 00011000 *********  
11001000 00010111 00011*** *********  
otherwise  
examples:  
DA: 11001000 00010111 00010110 10100001  
which interface?  
which interface?  
DA: 11001000 00010111 00011000 10101010  
Network Layer: Data Plane 4-17  
Longest prefix matching  
we’ll see why longest prefix matching is used  
shortly, when we study addressing  
longest prefix matching: often performed using  
ternary content addressable memories (TCAMs)  
content addressable present address to TCAM: retrieve  
address in one clock cycle, regardless of table size  
Cisco Catalyst: can up ~1M routing table entries in  
TCAM  
Network Layer: Data Plane 4-18  
Switching fabrics  
transfer packet from input buffer to appropriate  
output buffer  
switching rate: rate at which packets can be  
transfer from inputs to outputs  
often measured as multiple of input/output line rate  
N inputs: switching rate N times line rate desirable  
three types of switching fabrics  
memory  
bus  
memory  
crossbar  
Network Layer: Data Plane 4-19  
Switching via memory  
first generation routers:  
traditional computers with switching under direct control  
of CPU  
packet copied to systems memory  
speed limited by memory bandwidth (2 bus crossings per  
datagram)  
output  
port  
input  
port  
memory  
(e.g.,  
(e.g.,  
Ethernet)  
Ethernet)  
system bus  
Network Layer: Data Plane 4-20  
Tải về để xem bản đầy đủ
pdf 77 trang myanh 12260
Bạn đang xem 20 trang mẫu của tài liệu "Bài giảng Mạng máy tính - Chapter 4: Network Layer - The data plane - Nguyễn Lê Duy Lai", để tải tài liệu gốc về máy hãy click vào nút Download ở trên

File đính kèm:

  • pdfbai_giang_mang_may_tinh_chapter_4_network_layer_the_data_pla.pdf